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Space Time Picture of Heavy Ion Collisions

1. A heavy ion collision at RHIC has a center of mass energy

/5 = 200 GeV

nucleon pair

2. Each projectile has a “gamma factor” of




Phenomenon of Elliptic Flow

Y [fm]

1. In an off-central collision there is an
initial anisotropy in the transverse

plane of excited nuclear matter X [fm]

Y [fm]

2. Pressure gradients drive flow

preferentially in x-direction
X [fm]

3. This is quantified by expanding the yields in terms of a Fourier series
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Measurement of Elliptic Flow

Y [fm]

1. In general impact parameter may
not be aligned with lab axis

Au+Au & RHIC

< - Yrp :
'.' — X [fm]
! [Arb. Units]
. Units
27 pr dy dp, d¢
1.5
t4X v
2. The simplest method is the 10
“event plane method” .
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Measurement of Centrality

We can choose an impact parameter by selecting events with a certain multiplicity
. . .. . ~ 2
At high energies the cross section is almost geometrical O¢ot =~ T (QR A)

If we assume that the events with the highest multiplicity have the smallest impact

parameter
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1.

Measured Elliptic Flow

Such a large elliptic flow is rather surprising since the production
processes in pQCD knows nothing about the geometry
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Elliptic flow from MPC

1. If re-scattering among the produced gluons is included the pQCD
cross section is too small in order to get the observed flow
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Elliptic flow in UrQMD

Flow is clearly present from hadronic re-scattering
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But the magnitude is off by a factor =4




Elliptic flow from Ideal Hydrodynamics

1. The theoretical limit of zero mean free path is able to reproduce observed flow
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Fluid Dynamics from Kinetic Theory

1. Starting point of our kinetic description is the quasi-particle phase space density

f(p,x,t)d*zd®p

2. Liouville Theorem (collision-less system)

POy A= (8, + vid £) =0
Ep f(P,X, ):( t+vp i)f(p7X7 )_
vizpi
p—Ep

3. Or in the presence of collisions

(615 + 'U:)az) f(p7 X, t) — _C[fv p]




1.

Number density

d3

Notation

it = [ i = [

/f / <2:>3pr

Epf(p, X, t)

2. And since we are only considering on-shell excitations

d>p

[

21)3 By
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Particle Flow

d3p
Density: n(x,t) = / (27)3 f(p,x,1)
Current: ] (X, t) — / (27‘(‘)3 Upf(p, X, t)

can be grouped into the four-current:

%, ) = (n,ji) = / P £ (D, x, 1

b




Energy Flow

d>p
. Energy density: e(x, ?f) = (2 )3 Epf(p, X, t)
(s
d>p Py
. Energy flow: / (27_‘_)3]? U‘g)f(p, X, t)
d’ -
. Momentum flow: / (27_‘_1)?3 Ep?];’)f(p, X, t)

. can be grouped into the energy momentum tensor:

T = /p’“‘p”f(p,x, t)
P




Summary

1. So far everything has been very general

e The only assumption being that we have well-defined quasi-particles

2. We have simply written the definition of the particle and momentum

flow in compact notation

. t) = (n, ) = / P F(p, %, 1)
P
T = [ pp? f(p,x,t
/pp p” f(p,x,t)

3. Next step is to include collisions ...




Boltzmann Equation

1. Boltzmann equation is a specific choice of collision operator

(at + U;az) f(p7 X, t) — _C[f7 p]

1 2(9.)4 54 oy o
clrpl= [ | [ 1MP@ (P Q= P @) o Sabo

2. Collisional Invariants:
For any quantity y conserved during the collision

/ (;i];?) x C[f,p] =0




Macroscopic oM

1. Starting with Boltzmann equation

(8 + v38;) f(p,x,t) = —Clf, P
2. Act on both sides with / X
P

/X(at+vf>8i) f(PaXat)Z—/XC[f,p]:O

3. Pulling out the derivatives

o [ x40 [ vt =0
| & | &




L)
O
=

Macroscopic |

1. Current Conservation:
x=Ey: 0,5"(X)=0m(x,t) + ;5" (x,t) = 0

2. Emergy Momentum Conservation

X = Eppt . 9,T"(X) =0T (x,t) + 9T (x,t) = 0

v=0,1,2,3
3. Still pretty trivial

e Used ene-mtm conservation on microscopic level and
got ene-mtm conservation on macroscopic EoM




Flow velocity

1. Up to now we haven’t discussed the hydrodynamic flow velocity

2. Not to be confused with an individual particle’s momentum




General properties of flow velocity

Time length vector of length c=1

[ _
uFu, = 1

An any space-time point can find a LRF such that

uf e =(1,0,0,0)

It will be useful to define a projector

AP = g"" + uHu”

which removes component of vector parallel to velocity

Ay, =0




Eckart Definition

Let’s tie the hydrodynamic velocity to the flow of particles

v _jV

U = .
UY)a

Eckart’s definition implies that in the LRF

ngF — (TL, 07 07 O)

Interpretation: flow velocity is the average particle velocity

Not suitable for relativistic systems since particle number is not

conserved




Landau-Lifshitz Definition

1. Instead we can tie the velocity to the flow of momentum

w
1)y,

__uaTwﬁuB

U, —

2. This is the “Landau-Lifshitz” definition and we shall use this convention

3. This is the frame where there is no flow of momentum

Oz __ 0 _
TLRF _ TLRF =0




Coming back to Boltzmann Eqn.

1. We want to solve the Boltzmann equation in the limit of small

!
L

€

2. Without being too precise

(875 - U:)az) f(pa X, t) — _C[f7 p]

f ~ Ucf

Ve = n{ov12)

U
L

1
3. or 1n operator notation ,Cf = ZC[f, p]




Zeroth order solution

1
1. Attempt a series expansion of ,Cf = -C [f, p]
€
f=fot+efi+eEfat- -

2. Then at zeroth order C[fo, p] =0

3. Looking at the form of the collision operator
1 2 4 ¢4 / /
C[f,p]=]—? MF(2m)"6" (P+Q — P = Q) [far for — faf]
q/q" Jp’

we must have fgf fgf — fgfpo at zeroth order.




Zeroth order solution (cont.)

Equilibrium distribution must satisfy fg/ pr/ — fg fg
and therefore In qu/ + In fg/ = In fqo + In fg

so fp must be a linear combination of collisional invariants

In fO(P, X) = a(X) + b, (X)p"

Exercise: Show fp must take the following form

P

T

Notice this form didn’t depend on details of matrix element




Euler Equations

1. Exercise:
Using the definition of the current and Stress-Energy Tensor

15" = /p“p”fo(p, x,t) o (x,t) = /p“fo(p, X, 1)
| & | &
Show that:
)" = eutu” + pAH” jo = nut
2. The ideal stress-energy tensor along with the EoMs
c%Té“’(X) =0 8ujg(X) =0

are known as the relativistic Euler Equations.




1.

Fuler

Kquations (cont.)

We derived the Euler Equations from first principles

(although under very restrictive approximations)

)Y = eutu” + pAHY 0, T8 (X)=0

Exercise: Rewrite the Euler equations in the following form

De
Du*

= —(e+p)Vuu”
e+ p

where D = u”@u and VH* = A*Y0, .




T-1n coordinates

Want to use variables more suitable for HIC

T o= V22 t = 7coshn
1. t+ =z B .

n = —=In z = Tsinhn
2 t—=z

Coordinates transverse to beam direction remain the same

Exercise: show

d*r = dtd’z = rdrdnd*x |




Simple Example of t-n coordinates

ct [fm]
30t

2.5f
20f
1.5f

1.0

05F

L1 L1 L1 L 11 Lo f
10 1 Ty 2 (m)

Consider three particles moving in z
direction at Oc, 0.5c and 0.9c

T [fm/c]
30t \ \ t=2 / /

L \\ \ fm/ / "

[ C ’ 1]
25 C ‘\\‘ \ ’/’ !
2.0_ t=1 fm/c \‘\ \\*,’ /I
15}
10} -
05}

[ . 1 . - | .

-3 -2 -1 8 1 2

In t-n these particles sit at constant 7.




Space Time Picture of Heavy Ion Collisions

ct [fm]
3.5

3.0
25
20
1.5
1.0
0.5

= m sinhy

+ z (fm)

1. In a high energy collision there is a separation of scales between the

longitudinal and transverse momentum

2. This leads to a correlation between momentum and position

Z
p_N_ or yr\J’)’]
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The three rapidities

1. Spatial Rapidity n = 1 In t+2
2 t—=z
2. Particle Rapidity y = 1 In E+p,
-2 F — Pz

3. Particle Pseudo-rapidity

1 - 1 1 0
Tlpseudo = 3 In ‘ﬁ‘ TP = —In T Cos — — In [tan
2 ‘ﬂ — Pz 2 1 — cosé@ )
.




Bjorken’s initial estimate of the energy density

1. The energy of particles in one unit of rapidity can
be estimated

dE dN.
—— &~ (E)x15x —
dnpseudo Tlpseudo
~ 0.5 GeV x 1.5 x 170
~ 128 GeV

2. and this energy that flows into the detector reflects
the initial energy in a given space time rapidity slice
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Bjorken’s hydrodynamical model

1. Assume one-dimensional flow along the beam direction

€ = 6(7_777)
u'(t,2) = (u’(r,1),0,0,u*(7,n))

2. with the following initial condition

6(70777) = €0

1
UM(TOW) — T_O(tvovoaz) — (COShn707oasinhn)




Boost Invariance of initial conditions

1. If we consider a Lorentz boost of initial condition in beam direction

cosh¢g 0 0 sinh¢g
0 1 O 0
b —
A = 0 0 1 0 v, = tanh ¢
sinh¢ 0 0 coshog

2. we find the form of the initial conditions are preserved

~

€0 — €p
ut(to,m) = u"(70,m+ @) = (cosh(n + ¢),0,0,sinh(n + ¢))

3. so if we have the solution for a fixed n we can find the solution for any €
through a longitudinal boost of that solution




T-1n coordinates

1. Now make the coordinate transformation

' = (t,xL,2) > 2" = (1,21,n)

.
dzt

dx? Y

2. The velocity transforms as ut =

at = (u",u",uY,u') = (1,0,0,0)

note: I'll drop the tilde when confusion cannot arise




EoM in 1-1 coordinates

1. In this new coordinate system

0=d,T" =8, T" +TH T + T THe

2. Exercise: Show that the non-vanishing Christoffel symbols are

1
n —_-17Nn — _ T
M, =Th,=—-, I}, =7

and that the resulting EoM is

e+ 72T

T

0.e =




Fuler’s equations in t-7n coordinates

1. The ideal stress energy tensor takes the following form

W = diag(e, p,p,p/T?)

2. And therefore Euler’s equation in 141 D is




If you're not a fan of G.R.

e+ p
-

1. Exercise: Derive 0, = — in flat space

2. You will need

(e +p)cosh?’n—p 0 0 (e+p)coshnsinhny
8 01 ,
(e +p)coshnsinhn 0 0 (e+p)sinh®n+p
and the following derivatives
0; = coshnd, — sinThnan
5. = —sinhyo, + g,

T




Euler’s equation in 1+1 D (cont.)

1. For a massless ideal gas we have the following thermodynamic information

e+ p
T

e oc T4 e=3p S =

e+ p

2. and therefore Euler’s equation 0. = — can be solved

e(T) = e (2)4/3 T(1) ="1Ty (E)l/?) s(T) = sg (

T




Three Dimensional Expansion

At late times when the longitudinal extent is on the order of the

transverse extent
T~ R Au / C

the evolution becomes three dimensional

RoxT V ox 713

For an ideal expansion the total entropy is constant




Free Streaming

_€—|—M7
T

1. 1D expansion (O,e =

2. 3D expansion

e(T) = e (E)g ) - T, (2)3/4 o) = 50 (2)9/4

T T T

3. In contrast to the Ideal solution (where entropy is conserved) we see here
the energy is conserved and the entropy increases with time




Summary

T [MeV]
500

250

100+ «—1D

50

7 (fm/c)

L’] = S —————

10 20




Viscous Hydrodynamics

Now lets look at corrections to the ideal stress energy tensor
Let us include corrections to first order in gradients of any fields
The most general form that these corrections can take are

T =T —not” — (V ut

where

2
oht” = VHPu" + VVul — gA“”V,\UA

The above stress tensor with the EoM a,uT“ Y — () are known as
the Navier-Stokes equations.




Viscous Expansion in 0+1 D

1. Exercise: Derive the NS equations for a 0+1 D boost invariant expansion

__4n
de _etP- 35y
dr T
2. The gradient expansion is valid when
n 1
- <1

E+pT




Applicability of Hydrodynamics

1. This condition — &1 can be written as

eE+pPT
M 1
— X o <1
S ok

e~ e~
Medium Experimental
Parameter Parameter
1 1

~ 0.66

2. At RHIC 7T 1 fm x 300 MeV

and therefore we need ,S 0.3 in order for hydrodynamics to work.

» |33




Applicability of Hydrodynamics
n 1

— &K1 evolve in time?
E+pT

1. How does

2. Lets look at two models for the viscosity

e Conformal Gas: il ~ const. (examples: pQCD, N=4 SYM)
S

e Constant Cross Section: (example: Boltzmann simulations, HRG)

» [
SHE




Conformal Gas

n 1 nl
e+pr s7T

1. For a conformal gas we have

7—1/3  Ideal Hydro.

2. For a 0+1 D longitudinal expansion 7' ~ { “1/4  Free St :
ree Streaming

T

n 1 1
e =T

71 Ideal Hydro.

3. For a 3D expansion 1 ~ { —3/4

T Free Streaming

n 1 1
e+pr 701/4




Hard Sphere Gas

n 1 nl 1 1
1. For a hard sphere gas we have e+pT s 7T SOT +T3

7—1/3  Ideal Hydro.

2. For a 0+1 D longitudinal expansion 7T ~ .
Free Streaming

T

n 1 1
e+pr TO1/4

71 Ideal Hydro.

3. For a 3D expansion 1"~ { 7=3/4  TFree Streaming

1
noL ~ 7275/4
E+pPT




Summary

1. Only for a 3D expansion with constant cross section will the

system ever freeze-out

1D expansion | 3D expansion
N o T3 (l)2/3---3/4 (l)o---l/ll
77 ~ I (l)o...1/4 7_2,,,5/4




